Responsiveness of the human airway in vitro during deep inspiration and tidal oscillation.

نویسندگان

  • Peter B Noble
  • Robyn L Jones
  • Elangovan Thaya Needi
  • Alvenia Cairncross
  • Howard W Mitchell
  • Alan L James
  • Peter K McFawn
چکیده

In healthy individuals, deep inspiration produces bronchodilation and reduced airway responsiveness, which may be a response of the airway wall to mechanical stretch. The aim of this study was to examine the in vitro response of isolated human airways to the dynamic mechanical stretch associated with normal breathing. Human bronchial segments (n = 6) were acquired from patients without airflow obstruction undergoing lung resection for pulmonary neoplasms. The side branches were ligated and the airways were mounted in an organ bath chamber. Airway narrowing to cumulative concentrations of acetylcholine (3 × 10(-6) M to 3 × 10(-3) M) was measured under static conditions and in the presence of "tidal" oscillations with intermittent "deep inspiration." Respiratory maneuvers were simulated by varying transmural pressure using a motor-controlled syringe pump (tidal 5 to 10 cmH(2)O at 0.25 Hz, deep inspiration 5 to 30 cmH(2)O). Airway narrowing was determined from decreases in lumen volume. Tidal oscillation had no effect on airway responses to acetylcholine which was similar to those under static conditions. Deep inspiration in tidally oscillating, acetylcholine-contracted airways produced potent, transient (<1 min) bronchodilation, ranging from full reversal in airway narrowing at low acetylcholine concentrations to ∼50% reversal at the highest concentration. This resulted in a temporary reduction in maximal airway response (P < 0.001), without a change in sensitivity to acetylcholine. Our findings are that the mechanical stretch of human airways produced by physiological transmural pressures generated during deep inspiration produces bronchodilation and a transient reduction in airway responsiveness, which can explain the beneficial effects of deep inspiration in bronchial provocation testing in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airway re-narrowing following deep inspiration in asthmatic and nonasthmatic subjects.

After bronchoconstriction, deep inspiration (DI) causes dilatation followed by airway re-narrowing. Re-narrowing may be faster in asthmatic than nonasthmatic subjects. This study investigated the relationship between re-narrowing and the magnitude of both DI-induced dilatation and the volume-dependence of respiratory system resistance (Rrs) during tidal breathing. In 25 asthmatic and 18 nonasth...

متن کامل

Length oscillation mimicking periodic individual deep inspirations during tidal breathing attenuates force recovery and adaptation in airway smooth muscle.

Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called f...

متن کامل

Responsiveness of the isolated airway during simulated deep inspirations: effect of airway smooth muscle stiffness and strain.

In vivo, breathing movements, including tidal and deep inspirations (DIs), exert a number of beneficial effects on respiratory system responsiveness in healthy humans that are diminished or lost in asthma, possibly as a result of reduced distension (strain) of airway smooth muscle (ASM). We used bronchial segments from pigs to assess airway responsiveness under static conditions and during simu...

متن کامل

Difference between dosimeter and tidal breathing methacholine challenge: contributions of dose and deep inspiration bronchoprotection.

BACKGROUND Two bronchoprovocation methods are widely used. Compared to the tidal breathing method, the dosimeter method delivers approximately half the dose and involves five deep inhalations. Both the lower dose and the bronchoprotective deep inhalations contribute to the lesser airway response of the dosimeter. OBJECTIVE To determine the relative role of dose and deep inspiration in the dif...

متن کامل

بررسی نیاز‌های توجهی کنترل الگوی تنفس و ارتباط آن با پیامد‌های متابولیکی تنفس در افراد سالم

Objective: Normal breathing is essential for adjustment of natural metabolism of human body. Therefore, the aim of this study was to evaluate the control of breathing pattern in normal subjects both at rest and during cognitive loading. Materials & Methods: In this quasi-experimental study, 24 healthy subjects (14 males, 10 females) were selected by simple and convenient sampling. Spirometry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 110 6  شماره 

صفحات  -

تاریخ انتشار 2011